
Interference effects in a double quantum dot system with inter-dot Coulomb correlations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys.: Condens. Matter 19 176202

(http://iopscience.iop.org/0953-8984/19/17/176202)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 17:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/19/17
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 19 (2007) 176202 (12pp) doi:10.1088/0953-8984/19/17/176202

Interference effects in a double quantum dot system
with inter-dot Coulomb correlations

D Sztenkiel and R Świrkowicz
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Abstract
Electron transport through a double quantum dot system is studied with the use
of the Green function formalism based on the equation of motion method, and
an interplay between interference and Coulomb blockade effects due to inter-
dot correlations is discussed. A double structure with two Fano resonances
(or antiresonances) is found in the conductance spectrum. Fano features are
weakly influenced by the presence of Coulomb interaction but the conductance
is strongly suppressed in the energy region with the Fermi level in the leads
close to the aligned levels of both dots. This Coulomb blockade effect takes
place when the coupling between the dots is of repulsive character. On the other
hand, the conductance of an artificial molecule with attractive inter-dot coupling
is only slightly modified in this energy region. As a sign of the coupling can be
easily changed in a presence of an external magnetic field by changes of the
magnetic flux there is the possibility to control variations of the conductance,
which may be important from the application point of view.

1. Introduction

Recently, due to advances in nanotechnology, the Fano resonance in electron transport through
nanoscopic devices has attracted considerable attention [1–6]. The effect results from quantum
interferences between resonant and non-resonant processes and can be observed in systems
of a special geometry with at least two scattering channels. Fano resonance manifests itself
in conductance spectra of such systems as an asymmetric line of a particular shape. Fano-
like features as well as interference effects were investigated in an Aharonov–Bohm (A–B)
interferometer with a quantum dot (QD) embedded in a one arm of the interferometer, in double
quantum dot (DQD) structures, or in other nanoscale devices in which quantum coherence
phenomena play an important role [1–6]. The coherence of quantum mechanical states has
recently gained a broad interest as it is important for quantum computation [7]. Oscillations
of the current in the presence of magnetic flux in A–B interferometers containing one or two
QDs are evidences for coherent transport, and such systems enable investigations of the phase
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coherence. Fano resonance also appears to be a very good probe of the phase coherence
in QDs [8]. Moreover, in such systems the key parameters which strongly influence the
Fano effect can be easily tuned, which offers new possibilities which are not accessible in a
conventional set-up. Johnson et al studied a tunable interferometer consisting of a QD coupled
in a tunnel way to a one-dimensional channel and observed a series of Fano resonances [1].
Similarly, Kobayashi et al investigated the tunable Fano effect in a QD embedded in an
A–B ring [2], whereas Zacharia et al analysed in detail interference effects in a tunable
single-electron transistor with weak coupling to the leads [3]. DQD systems are especially
interesting as each of the QDs can be manipulated separately, which increases the number
of key parameters in comparison to single-dot interferometers [6]. In particular, the inter-dot
coupling, which influences the Fano line shape considerably, can be tuned with the use of
gate voltages [9]. The observation of the Kondo effect in strongly coupled DQD systems was
interpreted as evidence for spin entanglement between the excess electrons on each dot [10].
The lateral transport through strongly vertically coupled QDs reveals both Kondo and Fano
effects [11]. The observation of both effects in one device offers the possibility to study
interference and many-body effects in the same system. The entanglement phenomenon versus
the Kondo effect in DQD systems of various topology have been studied theoretically very
recently [12]. The problem is of current interest as nanostructures consisting of coupled QDs
seem to be very good candidates for solid-state arrays of qubits [7]. Fano features in the
conductance spectrum due to interference processes between possible pathways for electrons
tunnelling through two exchange split states in diatomic molecule can be used to detect singlet–
triplet splitting in such molecules, as has been recently proposed by Fransson and Balatsky [13].

The Fano effect in DQD systems of various topology has been a subject of intensive studies
during the last few years, and various theoretical approaches have been proposed [8, 13–34].
Kubala and Konig reported a level attraction in an A–B interferometer with two QDs [14],
whereas Ladron de Guevara et al [15] have investigated electronic transport across DQD
structures and discussed modifications of the Fano resonance during a gradual transition
from a series to a parallel configuration of two dots coupled via tunnelling processes. The
presence of two different pathways accessible for the electron transport leads to conductance
spectra composed of Breit–Wigner and Fano-like resonance peaks which correspond to bonding
and antibonding molecular states, respectively. A progressive line narrowing of the Fano
peak can be observed as the system transits from the series to the parallel arrangement.
Applying a magnetic field to a double dot structure in the parallel configuration allows one
to interchange the roles of the bonding and antibonding states in the transmission spectrum
by changing the magnetic flux by 2π and this swap effect might be of potential application
in quantum computation [18, 35]. Orellana et al considered electron transport through a
DQD region asymmetrically coupled to the leads [20]. It was shown that the observed Fano
and Dicke effects can be controlled by the magnetic flux. Resonant tunnelling and Fano
resonance in QDs in a presence of electron–phonon interaction has been studied very recently
by Ueda and Eto, who have found a strong influence of acoustic phonons on the Fano line
shape [23]. No Coulomb interaction between electrons was taken into account in all these
approaches [8, 14–23]. Coupled parallel QD systems with on-site Coulomb correlations
included within the framework of the Hartree–Fock approximation have been studied quite
recently, and an additional Fano resonance resulting from interferences between Coulomb
blockade peaks has been found [24]. An influence of quantum interferences on spin-polarized
transport across a DQD region attached to magnetic electrodes has been also studied [25, 26].
The interplay between interference and interaction effects due to on-site Coulomb interactions
has also been investigated in a more rigorous approach, and the coexistence of Fano and Kondo
resonance peaks has been discussed [27–33].
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Figure 1. Schematic diagram of double quantum dots
coupled to left (L) and right (R) leads.

Theoretical studies of the Fano effect in coupled QDs have mainly been performed
for non-interacting systems or correlated ones with on-site Coulomb interaction taken into
account, whereas the effects of inter-dot correlations were often neglected. Some investigations
concerning two QDs in a parallel geometry with intra- and inter-dot interaction included in the
Kondo regime have been undertaken, but no direct coupling between the dots was taken into
account [36–38]. Generally, inter-dot Coulomb correlations are weaker than the on-site ones,
and moreover, the correlation strength can be controlled in the experimental set-up. Their role
may be important in studies of the Fano effect as the coupling strength between dots can be
comparable to the Coulomb interaction.

In the present work, a theoretical study of the Fano effect in a DQD system with inter-
dot Coulomb interaction taken into account is addressed. A special geometry which allows
a transition from the series to the parallel configuration of two dots coupled via tunnelling
processes is assumed (figure 1). Calculations are performed with use of the Green function
(GF) formalism based on the equation of motion (EOM) method. A standard Hartree–Fock
procedure is used, so the approach is appropriate for temperatures higher than the Kondo
temperature. Limits of intermediate and weak coupling between the dots are discussed, and
Fano resonance or antiresonance is found in these two regimes, respectively. Due to inter-
dot Coulomb interactions between electrons, described by the parameter U , additional Fano
features are obtained in conductance spectra for energies corresponding to molecular states
shifted by U . Calculations performed in the intermediate regime show that the Fano resonance
is weakly influenced by inter-dot Coulomb interaction, and only a slight lowering of the peak
intensity can be observed for U → ∞. However, the behaviour of the linear conductance apart
from the resonance strongly depends on the sign of the inter-dot coupling t . The conductance of
an artificial molecule (with the attractive coupling between the dots t < 0) remains practically
unchanged in the energy region where the Fermi level in the leads EF is close to the aligned
levels of both dots E0, whereas in the case t > 0 a strong suppression of the conductance is
obtained in this energy region due to correlation effects. As the sign of t can be easily changed
in the presence of a magnetic flux there is the possibility to control variations of the conductance
in correlated systems. Significant suppression of the conductance in the vicinity of EF ≈ E0

when the magnetic flux changes by 2π would indicate that in the system under consideration
correlation effects play an important role.

2. Model

The system under consideration, which consists of two QDs coupled via tunnelling processes
and attached to external leads, is schematically presented in figure 1. It is described by the
Hamiltonian

H = HL + HR + HDQD + HT. (1)

The term Hβ with β = L, R describes the left (β = L) and the right (β = R) electrodes in the
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non-interacting approximation and is taken in the form Hβ = ∑
k εkβa†

kβakβ . a†
kβ (akβ) denotes

here the creation (annihilation) operator of an electron with the wavenumber k in lead β , and
εkβ is the corresponding single-particle energy.

HDQD describes the two-dot region and is equal to

HDQD =
∑

i=1,2

Ei d
†
i di + t (d†

1 d2 + d†
2 d1) + Ud†

1 d1d†
2 d2. (2)

We assume that only one energy level Ei in dot i (i = 1, 2) is active in the transport. In the
above expression d†

i (di) denotes the creation (annihilation) operator of an electron in dot i , and
t is the strength of tunnelling coupling between dots. Inter-dot Coulomb interaction between
electrons is taken in the Hubbard form and is described by the last term in Hamiltonian (2).
Empty or singly occupied states are considered and the appropriate terms corresponding to
on-site Coulomb interactions are omitted in equation (2).

Tunnelling processes between the DQD region and external electrodes are described by
HT, which represents the last term in the full Hamiltonian of the system (equation (1)) and is
taken in the form

HT =
∑

k,i=1,2
β=L,R

(Tkβi a
†
kβdi + T ∗

kβi d
†
i akβ) (3)

where Tkβi are elements of the matrix describing tunnelling processes between the electrode
β (= L, R) and dot i . In a general case an external magnetic field can be applied to the
system; then a phase shift due to the magnetic flux is included in these coefficients [18].
Elements Tkβi are directly related to tunnelling rates �

β

ii ′ defined as follows: �
β

ii ′ (ε) =
2π

∑
k Tkβi T ∗

kβi ′δ(ε − εkβ), which are treated here as independent of energy. Couplings

to electrodes are then expressed by the matrices: �̂L = �
( 1

√
αeiφ/2

√
αe−iφ/2 α

)
and �̂R =

�
( α

√
αe−iφ/2

√
αeiφ/2 1

)
. When α is changed from 0 to 1 a transition from a serial to a parallel

configuration of two dots can be realized (figure 1). For 0 < α � 1 two paths are possible,
which leads to interference effects, and non-diagonal matrix elements �

β

ii ′ with i �= i ′ are
different from zero. A phase shift due to the magnetic flux is included into non-diagonal terms
and φ = 2π	/	0, where 	 and 	0 are the external flux through the system and the flux
quantum, respectively.

The Green function formalism based on the equation of motion method is applied to study
the electron transport. The current flowing through the system in the presence of a bias voltage
is calculated according to a formula derived by Meir [39] (details of the calculations are given
in the appendix):

I = i
2e

h̄

∫
dε

2π

1

2
Tr{(�̂L − �̂R)Ĝ<(ε) + [�̂L fL(ε) − �̂R fR(ε)][Ĝr(ε)−Ĝa(ε)]}. (4)

fβ represents here the Fermi–Dirac distribution function and the matrix Ĝ j with elements
G j

ii ′ = 〈〈di , d†
i ′ 〉〉 j

ε denotes the Fourier transform of the retarded, advanced and lesser Green
function for j = r, a,<, respectively. Retarded and advanced Green functions are calculated
with use of the EOM method [40–42]. A standard Hartree–Fock procedure is employed to
decouple higher-order functions which contain a†

kβ , akβ operators apart from di ones. However,

no decoupling is introduced for functions of the type 〈〈di ′ d†
−i ′d−i ′ , d†

i 〉〉, and they are calculated
according to appropriate second-order equations. Solutions of the set of equations of motion
can be written in the following form which corresponds to the Dyson equation (for details see
the appendix):

Ĝ(ε) = [ Î − ĝ(ε)
̂(ε)]−1ĝ(ε). (5)
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ĝ(ε) with elements gii ′(ε) = δii ′(ε − Ei)
−1 represents here the Green function of the dots in

the absence of any coupling or interaction. All correlation and tunnel effects are included into
the self-energy 
̂ which is given by the expression


̂(ε) = ĝ−1 − [ĝ−1
U − T̂ − U ˆ̃n]−1(ĝ−1

U − T̂ )(ĝ−1 − T̂ ) + 
̂0. (6)


̂0 with elements 
0ii ′ = ∑
kβ=L,R

Tkβi T ∗
kβi′

ε−εkβ
denotes here the self-energy of the non-interacting

system, gUii′ = δii ′(ε − Ei − U)−1, Tii ′ = δi−i ′ t and ñii = −〈d†
−i d−i 〉, ñi−i = 〈d†

−i di〉.
To calculate the mean value 〈d†

i di ′ 〉 defined as follows: 〈d†
i di ′ 〉 = −i

∫
dε
2π

G<
i ′i , the lesser

Green function G<
i ′i should be known. In the present approach the function is determined

according to the Keldysh equation Ĝ< = Ĝr
̂<Ĝa with the Ng ansatz [43] used for 
̂<,
namely 
̂< = 
̂<

0 �̂−1�̂e f where 
<
0 = i(�̂L fL + �̂R fR), �̂ = �̂L + �̂R = i(
̂r

0 − 
̂a
0)

and �̂e f = i(
̂r − 
̂a). The advanced Green function Ĝa and the retarded one Ĝr = (Ĝa)†

are calculated from the Dyson equation (5). The knowledge of Ĝ< allows one to calculate
electric current according to equation (4). In the following we limit the discussion to the linear
conductance G given by

G = 2e2

h

∫
dε

2π

1

2
Tr[�̂LĜr ˆ̃�

R
Ĝa+�̂RĜr ˆ̃�

L
Ga]

(

−∂ f

∂ε

)

(7)

with ˆ̃
�

β

= �̂β �̂−1�̂e f . The above expression can be easily obtained from equation (4) when
the relations Ĝ< = Ĝr
̂<

0 �̂−1�̂e f Ĝa and Ĝr − Ĝa = Ĝr(
̂r − 
̂a)Ĝa = −iĜr�̂e f Ĝa =
−iĜr�̂�̂−1�̂e f Ĝa are taken into account and the Fermi–Dirac functions are expanded in series
with respect to the applied bias voltage: fL(ε) − fR(ε) ≈ − ∂ f

∂ε
eV. Note that for the non-

interacting system �̂e f = �̂, and equation (7) reduces to the one used in [15].

3. Results and discussion

The interplay between correlation and interference effects is studied in two regimes of inter-dot
tunnelling coupling, namely in the intermediate one with rate t being of the same order as the
coupling of the DQD region with external electrodes described by �, and in a weak-coupling
regime with t � �. The symmetric DQD system with energy levels of both dots aligned and
equal to E1 = E2 = E0 = 0 is discussed here. All parameters are measured in relative units
and � describing the coupling of the DQD region with one of the leads is taken as the energy
unit.

3.1. Intermediate-coupling regime

Consider first the case when the inter-dot tunnelling rate is of the same order as the coupling
to external electrodes. The linear conductance G calculated as a function of the Fermi energy
in the leads EF for t = ±� and several values of parameter α is displayed in figure 2. To
illustrate the influence of inter-dot Coulomb interaction curves obtained for the uncorrelated
system (U = 0) and for the correlated one with U = 5� are depicted (dotted and solid lines,
respectively). Results presented for an artificial molecule with t = −� and no interactions
taken into account are well known from other approaches [15, 16]. Two molecular states, the
bonding and antibonding ones with energies E0+t and E0−t , are active in the transport, giving
two peaks in the conductance for α = 0 (inset in figure 2, dotted line). Interference effects
present for α �= 0 due to different paths available in the system lead to Fano-like resonance
shown by the antibonding peak (figures 2(a) and (b), dotted lines). In the case t = � and
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Figure 2. The linear conductance as a function of the Fermi energy EF of uncorrelated (U = 0,
dotted lines) and correlated (U = 5�, solid lines) systems for kT = 0.01� and different values of
α, (left panel: t = −�, and right panel: t = �).

U = 0, the lower energy corresponds to the state E0 − t , and now this bonding peak develops
into the Fano one when interference effects become important.

Let us now discuss modifications of the conductance G resulting from inter-dot Coulomb
interactions. A typical conductance curve calculated for two dots in series with correlation
effects included shows four peaks, the bonding and antibonding ones as well as the appropriate
peaks shifted by U which result from the Coulomb repulsion (inset in figure 2, solid line). The
widths of the peaks are different but their intensities are almost equal. Interferences present in
the system for α �= 0 and t = −� lead to a considerable broadening of the bonding peak at
E0 + t as well as the one corresponding to energy E0 + t + U , whereas the antibonding peaks
centred at E0 − t and E0− t +U become narrower and show a Fano-like behaviour (figures 2(a)
and (b), solid lines). The intensities of both Fano resonances decrease as α increases, and for
high values of α only the wide peaks are visible in the conductance spectrum. The bonding
peak centred for an artificial molecule at energy E0 + t is very similar to the Breit–Wigner
one observed in the non-interacting system. In the case when t = �, the Fano-like behaviour
is shown by bonding peaks centred at E0 − t and E0 − t + U , and their shapes correspond
well to Fano resonance in a system with no correlation effects included. Similarly, the wide
peak which appears at energy E0 + t + U resembles the Breit–Wigner resonance in the non-
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Figure 3. Conductance for t = −� (a), t = � (b) and indicated values of U, α = 0.6 and
kT = 0.01�.

interacting system. The intensities and widths of the peaks are almost equal in both cases,
though they are shifted by U . However, the antibonding state with energy E0 + t leads to a
relatively narrow peak, and in consequence a considerable suppression of the conductance in
its vicinity is obtained (figure 2 right panel, solid lines).

The behaviour of bonding and antibonding states in correlated systems with interference
effects taken into account is well illustrated in figure 3, where conductance curves are depicted
for several values of U as well as for t = −� and t = �. The range of energies presented
in the figure is limited to a vicinity of EF ≈ E0 = 0, and the situation with the energy level
of both dots close to the Fermi level of the leads is considered. The figure illustrates very
well the interplay between Coulomb blockade and interference effects. As could be expected,
the bonding states, namely the wide resonance for t = −� or the Fano peak for t = �, are
practically not modified by Coulomb repulsion. It is also interesting that the Fano resonance
related to the antibonding state with t = −� is not essentially influenced by Coulomb blockade
effects (figure 3(a)). However, the conductance is suppressed in the vicinity of the peak. In
particular, the dip that is well visible in the spectrum of a non-interacting system directly after
the peak is now considerably influenced and the conductance is strongly suppressed. So, in
this energy region destructive interference effects are enhanced by Coulomb repulsion. Typical
Coulomb blockade effects take place for t = �, where the antibonding state is considerably
influenced by the presence of U (figure 3(b)). With increase of U the peak of Breit–Wigner
type centred at E0 + t starts to narrow, and the conductance is considerably suppressed. In
strongly correlated systems with U → ∞ the conductance is close to zero in a valley between
this peak and the Fano one associated with the bonding state. Note that the appropriate wide
peak which resembles the Breit–Wigner resonance appears at E0 + t + U when the energy due
to the gate voltage is sufficient to overcome the Coulomb repulsion (figures 2(d) and (e)).

Evolution of the conductance spectrum in the correlated system with U = 5� under the
magnetic field applied to the structure is presented in figure 4. For φ = 0 and α = 0.3, a
curve showing two Fano-like resonances related to the bonding states is obtained (figure 2(d),
t = �). As φ increases, the Fano peaks become wider, whereas the peak centred at E0 + t +U ,
and resembling the Breit–Wigner resonance, starts to narrow. For φ = π no features typical of
interference effects can be seen in the spectrum. The shape of the conductance curve resembles
very closely the one obtained for α = 0 (see the inset in figure 2), though both spectra are not
identical. When φ increases further, Fano resonance peaks develop, but now they are related
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Figure 4. Conductance as a function of the Fermi energy EF for t = � and different values of
magnetic flux, kT = 0.01�, U = 5� and α = 0.3.

to antibonding states. Therefore, a change of magnetic flux by 2π corresponds to a transition
from t = � to −�. Such changes lead to considerable modifications of the spectrum in the
energy region with EF ≈ E0 due to Coulomb blockade effects.

3.2. Weak-coupling regime

Consider now a weak-coupling regime with inter-dot tunnelling rate t much smaller than the
coupling to external electrodes. The results calculated in this case look different from the
ones obtained in the limit of intermediate coupling (t = ±�), which is well illustrated in
figure 5, where conductance spectra are presented for several values of α. Consider first a non-
interacting system with two dots in series and inter-dot rate t = −0.1�. The conductance shows
the low-intensity peak centred at E0 as bonding and antibonding states cannot be resolved due
to the small inter-dot tunnelling rate (figure 5(a), dotted line). Strong modifications of G are
obtained for α �= 0. As an additional path is accessible for electron transport the conductance
is considerably enhanced and a high-resonance peak can be seen. The peak is followed by
a relatively wide dip which appears in a close vicinity of E0 due to destructive interference
effects. As α increases, the peak intensity also increases approaching 2e2/h, whereas the dip
becomes less pronounced and narrower. For α = 0.9, one broad and high peak is obtained
and the dip is hardly visible. The results presented here for a non-interacting system can be
easily explained. As was shown in [15, 16], the Fano factor q which determines the line shape
is simply proportional to the inter-dot coupling t in such a case. For a small t/� ratio the
appropriate Fano factor is small, and it corresponds to antiresonance in the spectrum.

The influence of the correlation effects on the calculated conductance curves is also
presented in figure 5 for t = −0.1� and U = 5�. As could be expected, the Coulomb
interactions modify the conductance of two dots in series, leading to the appearance of an
additional peak centred at E0 + U . For α = 0, the intensities of both peaks are small, though
a bit higher than in the non-interacting case. When interference effects play an important role
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Figure 5. Conductance of uncorrelated (U = 0, dotted lines) and correlated (U = 5�, solid lines)
systems for indicated values of α and t = −0.1�, kT = 0.01�.

(α �= 0), two resonance peaks centred near E0 and E0 + U can be seen, which are followed by
well pronounced dips. As α increases, the behaviour of both peaks and dips is similar to that in
the non-interacting case. The results obtained for t = 0.1� are very similar, but the positions
of peaks and dips are interchanged.

The influence of the temperature on the calculated conductance is presented in figure 6
for U = 5� and t = 0.1�. At low temperatures, due to destructive interference effects the
conductance is suppressed considerably for EF close to E0 or E0 + U , and the dips are very
well pronounced. As kT increases, the role of interferences is less important because of thermal
broadening, and the dips become shallow, but they are still visible for intermediate values of
α. Note that for a relatively high temperature no dip appears in the conductance spectra in the
vicinity of E0 +U , though small dips are still present near E0 for α = 0.3 and 0.6 (figure 6(d)).

4. Summary and conclusions

Studies performed in this paper clearly show that correlation effects due to inter-dot Coulomb
interaction lead to a double structure with two Fano-like resonances or antiresonances. In the
intermediate regime with t = ±�, constructive interferences lead to the Fano resonance which
appears at energy E0 − t . Due to inter-dot Coulomb interactions, an additional Fano peak can
be observed at energy E0 − t + U . The result is well consistent with the one obtained by Lu
et al, who discussed the influence of on-site Coulomb interaction on the linear conductance in
the presence of a magnetic flux [24]. Further calculations presented in this paper show that the
Fano resonances are weakly influenced by the inter-dot correlations. However, one of the peaks
of Breit–Wigner type, centred at E0 + t , is strongly narrowed when t is positive, and due to
Coulomb blockade the conductance is considerably suppressed in the valley between this peak
and the appropriate Fano resonance. In strongly correlated systems, G is practically equal to
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Figure 6. The linear conductance as a function of the Fermi energy EF for indicated values of
temperature and α. The relevant parameters are as follows: t = 0.1�, U = 5�.

zero in the energy region between the two peaks. In double-dot systems the inter-dot correlation
parameter U is determined by the relation of the inter-dot capacitance C12 to the capacitances
of individual dots C1 and C2, and it can be controlled in an experimental set-up. Therefore, the
conductance of the system can also be controlled, and a regime where the conductance is close
to zero may be achieved. When a magnetic field is applied to a DQD structure a change of the
magnetic flux by 2π corresponds to a transition t → −t and leads to considerable variations of
the conductance in the energy region EF ≈ E0. Therefore, in a double-dot system there is the
possibility to control variations of the conductance in a wide range between zero and 2e2/h by
changes of magnetic flux by 2π , which may be important from an application point of view.

The results obtained in the weak-coupling regime look different. A well pronounced dip
appears near energy E0 as a result of destructive interferences. Since the additional path is
accessible for electron transport when α �= 0, the conductance is strongly enhanced, but
the resonance peak is associated with the dip. Inter-dot Coulomb correlations modify the
conductance curves, leading to a double structure with two dips and appropriate resonance
peaks. As in experimental set-ups in which two dots are coupled in an electrostatic way the
inter-dot rate can be easily tuned, the conductance of the system can show a different behaviour
depending on the parameters.

Appendix

The current flowing through the system from the lead β is given by the time derivative of the
occupation number in the lead, namely

Iβ = −e

〈
dNβ

dt

〉

= −i
e

h̄
〈H, Nβ 〉 (A.1)
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with Nβ = ∑
k a†

kβakβ . Taking into account Hamiltonian (1) and introducing the lesser Green

function defined as follows: G<
ikβ (t, t ′) = i〈a†

kβ(t ′)di(t)〉, one can express the current in the
form

Iβ = 2e

h̄
Re

∑

ki

Tkβi G
<
ikβ (t, t). (A.2)

When the Fourier transform of the G< is introduced and the Langreth theorem is applied:
G<

ikβ (ε) = ∑
i ′ T ∗

kβi ′ [G<
ii ′(ε)ga

kβ(ε) + Gr
ii ′(ε)g<

kβ(ε)], the current becomes equal to (details of
calculations are given in [40])

Iβ = 2e

h̄
Re

∑

kii ′

∫
dε

2π
T ∗

kβi ′ Tkβi [G<
ii ′(ε)ga

kβ(ε) + Gr
ii ′(ε)g<

kβ(ε)]. (A.3)

In the above formula, Gr
ii ′(ε) = 〈〈di ′ , d†

i 〉〉r
ε denotes the Fourier transform of the retarded GF

and ga
kβ(ε) = (ε − εkβ − iη)−1 and g<

kβ(ε) = 2π i fβ(ε)δ(ε − εkβ) are advanced and lesser
functions corresponding to the electrode β with fβ(ε) being the Fermi–Dirac distribution
function. Taking into account the definition of elements of �

β

ii ′ , one can finally express the
current in the form (see also [39])

I = i
2e

h̄

∫
dε

2π

1

2
Tr{(�̂L − �̂R)Ĝ<(ε) + [�̂L fL(ε) − �̂R fR(ε)][Ĝr(ε)−Ĝa(ε)]}. (A.4)

To calculate the electric current one should know the lesser, retarded and advanced GFs.
Functions Gr, Ga are determined with use of the equation of motion method, whereas the
lesser one is calculated from Keldysh equation Ĝ< = Ĝr
̂<Ĝa with the Ng ansatz used for the
self-energy 
̂< [43].

Functions Gii(ε) = 〈〈di , d†
i 〉〉 and G−ii (ε) = 〈〈d−i , d†

i 〉〉 fulfil the following equations of
motion:

(ε − Ei − 
0ii )Gii = 1 + U G21
i + (t + 
0i−i )G−ii (A.5a)

(ε − E−i − 
0−i−i )G−ii = U G22
i + (t + 
0−ii )Gii (A.5b)

with 
0ii ′ corresponding to the self-energy of the non-interacting system. In the above
equations, higher-order GFs appear, namely G21

i = 〈〈di d
†
−i d−i , d+

i 〉〉 and G22
i =

〈〈d−i d
†
i di , d†

i 〉〉. The appropriate equation for G21
i takes the form

(ε − Ei − U)G21
i = n−i + tG22

i +
∑

k,β

{T ∗
kβi 〈〈akβ d†

−i d−i , d†
i 〉〉

− T ∗
kβ−i 〈〈akβ d†

−i di , d†
i 〉〉 + Tkβ−i 〈〈a†

kβ di d−i , d†
i 〉〉} (A.6)

where ni = 〈d†
i di〉 denotes the mean number of electrons in dot i . At relatively high

temperatures the Hartree–Fock approach can be introduced to split higher-order functions
which contain akβ, a†

kβ operators apart from di ones. Then, equation (A.6) takes the form

(ε − Ei − U)G21
i = n−i (1 + 
0ii Gii + 
0i−i G−ii ) − n−ii (
0−ii Gii + 
0−i−i G−ii ) + tG22

i

(A.7)

with n−ii = 〈d†
−i di〉. Due to tunnelling processes between dots, the second-order functions G21

i
and G22

i are coupled. Writing a similar expression for the function G22
i , one obtains a set of

equations which can be easily solved. Finally, the Green function expressed in the matrix form
fulfils the following equation of motion (equation (5) in the text)

Ĝ(ε) = [ Î − ĝ(ε)
̂(ε)]−1ĝ(ε) (A.8)

which corresponds to the Dyson equation with ĝ(ε) being the GF of the DQD region in the
absence of any coupling or interaction and 
̂ represents the appropriate self-energy. Explicit
forms of these matrices are given in the text.
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